Analyzing Big Data with Microsoft R

Beskrivelse


Lær at bruger Microsoft R Server til at analysere store datasæt i Big Data miljøer med Hadoop, Spark cluster, og SQL Server databaser. Efter kurset vil deltageren være i stand til:

  • Forklare hvordan Microsoft R Server og Microsoft R Client arbejder sammen
  • Bruge R-klient med R-server til at udforske store datasæt fra forskellige datagrundlag
  • Visualiser data ved hjælp af grafer og diagrammer
  • Transformere og rengøre store datasæt
  • Implementere muligheder for at splitte analysearbejdet i forskellige parallelle opgaver
  • Bygge og evaluer regressionsmodeller genereret fra store datasæt
  • Oprette og implementer partitioning models genereret fra store datasæt
  • Bruge R i SQL Server og Hadoop miljøer

Indhold


Module 1: Microsoft R Server and R Client

  • Explain how Microsoft R Server and Microsoft R Client work.
  • Lessons
  • What is Microsoft R server
  • Using Microsoft R client
  • The ScaleR functions
  • Lab : Exploring Microsoft R Server and Microsoft R Client
  • Using R client in VSTR and RStudio
  • Exploring ScaleR functions
  • Connecting to a remote server Module 2: Exploring Big Data
  • At the end of this module the student will be able to use R Client with R Server to explore big data held in different data stores.
  • Lessons
  • Understanding ScaleR data sources
  • Reading data into an XDF object
  • Summarizing data in an XDF object
  • Lab : Exploring Big Data
  • Reading a local CSV file into an XDF file
  • Transforming data on input
  • Reading data from SQL Server into an XDF file
  • Generating summaries over the XDF data Module 3: Visualizing Big Data
  • Explain how to visualize data by using graphs and plots.
  • Lessons
  • Visualizing In-memory data
  • Visualizing big data
  • Lab : Visualizing data
  • Using ggplot to create a faceted plot with overlays
  • Using rxlinePlot and rxHistogram Module 4: Processing Big Data
  • Explain how to transform and clean big data sets.
  • Lessons
  • Transforming Big Data
  • Managing datasets
  • Lab : Processing big data
  • Transforming big data
  • Sorting and merging big data
  • Connecting to a remote server Module 5: Parallelizing Analysis Operations
  • Explain how to implement options for splitting analysis jobs into parallel tasks.
  • Lessons
  • Using the RxLocalParallel compute context with rxExec
  • Using the revoPemaR package
  • Lab : Using rxExec and RevoPemaR to parallelize operations
  • Using rxExec to maximize resource use
  • Creating and using a PEMA class Module 6: Creating and Evaluating Regression Models
  • Explain how to build and evaluate regression models generated from big data
  • Lessons
  • Clustering Big Data
  • Generating regression models and making predictions
  • Lab : Creating a linear regression model
  • Creating a cluster
  • Creating a regression model
  • Generate data for making predictions
  • Use the models to make predictions and compare the results Module 7: Creating and Evaluating Partitioning Models
  • Explain how to create and score partitioning models generated from big data.
  • Lessons
  • Creating partitioning models based on decision trees.
  • Test partitioning models by making and comparing predictions
  • Lab : Creating and evaluating partitioning models
  • Splitting the dataset
  • Building models
  • Running predictions and testing the results
  • Comparing results Module 8: Processing Big Data in SQL Server and Hadoop
  • Explain how to transform and clean big data sets.
  • Lessons
  • Using R in SQL Server
  • Using Hadoop Map/Reduce
  • Using Hadoop Spark
  • Lab : Processing big data in SQL Server and Hadoop
  • Creating a model and predicting outcomes in SQL Server
  • Performing an analysis and plotting the results using Hadoop Map/Reduce
  • Integrating a sparklyr script into a ScaleR workflow

Analyzing Big Data with Microsoft R

Eksklusiv moms.

Efter aftale / Kontakt for pris

Hvis du har valgt Efter aftale, kan du udfylde formularen nedenfor og så vender vi tilbage til dig og aftaler nærmere.

Har du spørgsmål?

Hvis du har yderligere spørgsmål til dette produkt eller ønsker at få fremsendt materiale i forbindelse med produktet, er du velkommen til at benytte kontaktformularen herunder.